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Abstract
This paper describes a novel framework to jointly
learn data-dependent label and locality-preserving
projections. Given a set of data instances from
multiple classes, the proposed approach can auto-
matically learn which classes are more similar to
each other, and construct discriminative features
using both labeled and unlabeled data to map sim-
ilar classes to similar locations in a lower dimen-
sional space. In contrast to linear discriminant anal-
ysis (LDA) and its variants, which can only return
c− 1 features for a problem with c classes, the pro-
posed approach can generate d features, where d is
bounded only by the number of the input features.
We describe and evaluate the new approach both
theoretically and experimentally, and compare its
performance with other state of the art methods.

1 Introduction
In many machine learning applications involving data from
multiple classes, it is highly desirable to map high dimen-
sional data instances to a lower dimensional space, with a
constraint that the instances from similar classes will be pro-
jected to similar locations in the new space. For example, we
might use 4 values to label query-document pairs in a ranking
algorithm: 1-“excellent”, 2-“good”, 3-“fair”, 4-“bad”. The
pairs labeled with “excellent” should be more similar to the
instances labeled with “good”, compared to the instances la-
beled with “bad”.

There are several challenges to address in this process.
Firstly, the relations between different classes are not known
in many applications, so we have to learn from the data about
which classes are similar to each other and how similar they
are. Secondly, the given labeled data is not sufficient in many
situations. This could result in overfitting problems, if we
learn the mappings solely from the labeled data. Thirdly, al-
though some dimensionality reduction approaches can be ap-
plied here to handle the challenges, one limitation of them is
that the dimensionality of the resulting data is bounded by the
number of classes. One such example is Linear Discriminant
Analysis (LDA) [Fukunaga, 1990]. For a data set with c class
labels, LDA type approaches can only achieve a c− 1 dimen-
sional embedding (since the matrix to model the between-

class difference only has c− 1 nontrivial eigenvectors). This
means LDA type approaches only yield a 1D embedding for
a dataset with two class labels (positive/negative), even when
the data is originally defined by several hundreds of features.

In this paper, we propose an approach (called “dis-
criminative projections”) that automatically constructs data-
dependent projections for both data instances and labels to
construct new representations. The novel part of this ap-
proach mainly comes from the projection function for the la-
bels. An illustration of this idea is given in Figure 1. Discrim-
inative projections has the goal to automatically learn the rela-
tions between different classes, eliminate useless features and
improve the speed and performance of classification, cluster-
ing, ranking, and multi-task learning algorithms. This ap-
proach is designed to handle the situation when the given la-
beled data is not sufficient. The goal is achieved by exploring
the relations between a small amount of labeled data that re-
flects the class separability and a large amount of unlabeled
data that reflects the intrinsic structure of the whole dataset.
Our work is related to previous work on regression mod-
els, manifold regularization [Belkin, Niyogi, and Sindhwani,
2006], linear discriminant analysis (LDA) [Fukunaga, 1990],
Canonical Correlation Analysis (CCA) [Hotelling, 1936] and
dimensionality reduction methods such as locality-preserving
projections (LPP) [He and Niyogi, 2003]. Discriminative
projections has the following advantages: (1) It automatically
constructs data-dependent label and locality-preserving pro-
jections to help map similar classes to similar locations in the
new space. (2) It makes use of both labeled and unlabeled
data, and is less prone to overfitting problems. (3) Dimen-
sionality of the resulting data is only bounded by the number
of the input features rather than the number of classes. This
is particularly useful for applications with a large amount of
input features but a small number of classes. (4) The algo-
rithm only requires specifying a single parameter and this pa-
per provides an intuitive way to set its value.

2 Related Work
Our approach learns discriminative projections to map high-
dimensional data instances and their corresponding labels to
a new space, leveraging the given class label information
and the data manifold topology so that instances from sim-
ilar classes will be mapped to similar locations. Our new
approach is related to the ideas of manifold regularization,



Figure 1: Illustration of regular learning approaches (A), and our
approach (B).

LDA, regular dimensionality reduction and Canonical Corre-
lation Analysis.

Linear regression involves estimating a coefficient vector
to map the data instances to real-valued outputs (or continu-
ous class labels). For example, given a set of instances {xi}
defined in a p dimensional space, a linear regression model
computes β0, · · · , βp such that label yi can be approximated
by

ŷi = β0 + β1xi(1) + · · ·+ βpxi(p) for i = 1, . . . , n.

The framework of manifold regularization [Belkin, Niyogi,
and Sindhwani, 2006] combines the standard loss functions
associated with regression or classification with an additional
term that preserves the local geometry of the given data man-
ifold (the framework has another term corresponding to an
ambient regularizer). One problem solved under this frame-
work can be characterized as follows: given an input dataset
X = (x1, · · · , xm) and label information Y = (y1, · · · , yl)
(l ≤ m), we want to compute a function f that maps xi to a
new space, where fTxi matches xi’s label yi. In addition, we
also want f to preserve the neighborhood relationship within
dataset X (making use of both labeled and unlabeled data).
This problem can be viewed as finding an f that minimizes
the cost function:
C(f) =

∑

i≤l

(fT
xi− yi)

2 +µ
∑

i,j

(fT
xi− f

T
xj)

2
WX(i, j). (1)

We can interpret the first mean-squared error term of C(f)
as penalizing the difference between a one-dimensional pro-
jection of the instance xi and the label yi. The second
term enforces the preservation of the neighborhood relation-
ship within X (where WX is a similarity measure). Under
this interpretation, manifold regularization constructs embed-
dings preserving both the topology of the manifold and a 1-
dimensional real-valued output structure. The proposed ap-
proach generalizes this idea to compute higher order locality-
preserving discriminative projections.

Many linear (e.g., PCA, LPP) and nonlinear (e.g., Lapla-
cian eigenmaps [Belkin and Niyogi, 2003]) dimensionality
reduction methods convert dimensionality reduction prob-
lems to an eigenvalue decomposition. One key limitation of

these approaches is that when they learn lower dimensional
embeddings, they do not take label information into account.
So only the information that is useful to preserve the topol-
ogy of the whole manifold is guaranteed to be kept, and the
discriminative information separating instances from differ-
ent classes may be lost. For example, when we are required to
describe a human being with a couple of words, we may use
such characteristics as two eyes, two hands and so on. How-
ever, none of these features is useful to separate men from
women.

Linear Discriminant Analysis (LDA) and some of its ex-
tensions like semi-supervised discriminant analysis [Cai, He,
and Han, 2007; Zhao et al., 2007] find a dimensionality-
reducing projection that best separates two or more classes
of objects or events. The resulting combination may be used
as a linear classifier, or for dimensionality reduction before
later classification. However, for a dataset with c class la-
bels, LDA type approaches can only achieve a c − 1 dimen-
sional embedding (since the matrix to model the between-
class difference only has c − 1 nontrivial eigenvectors). The
proposed approach can be distinguished from some recent
work. LDPP [Villegas and Paredes, 2008] learns the dimen-
sionality reduction and nearest neighbor classifier parameters
jointly. LDPP does not preserve the topology of the given
dataset. The algorithm in [Pham and Venkatesh, 2008] pro-
vides a framework to learn a (local optimal) linear mapping
function that maps the given data to a new space in order
to enhance a given classifier. Their mapping function is de-
signed for classification only and does not preserve the topol-
ogy of the dataset. [Zhang, Zhou, and Chen, 2007] incor-
porates pairwise constraints for finding a better embedding.
This approach does not consider the fact that some classes
are more similar to each other compared to the other classes.

Similar to our approach, the well-known Canonical Cor-
relation Analysis (CCA) [Hotelling, 1936] and recent work
on label embedding [Weinberger and Chapelle, 2008] also si-
multaneously compute two mapping functions. For example,
CCA finds linear functions that map instances from two dif-
ferent sets to one space, where the correlation between the
corresponding points is maximized. There is a fundamental
difference between our approach and these approaches: Our
approach can make use of unlabeled data to handle overfitting
problems, while approaches like CCA cannot.

3 Overall Framework
We introduce the overall framework in this section. It is help-
ful to review the notation described below. In particular, we
assume that class labels can be viewed as c-dimensional real-
valued vectors if there are c possible labels.

3.1 The Problem
Assume the given dataset X = (x1, · · · , xm) is a p × m
matrix, where instance xi is defined by p features. c = number
of classes in X . Label yi is a c × 1 vector representing xi’s
class label. If xi is from the jth class, then yi(j) = 1; yi(k) =
0 for any k 6= j. We also assume xi’s label is given as yi for
1 ≤ i ≤ l; xi’s label is not available for l + 1 ≤ i ≤ m.
Y = (y1, · · · , yl) is a c× l matrix.



The problem is to compute mapping functions f (for data
instances) and g (for labels) to map data instance xi ∈ Rp

and label yi ∈ Rc to the same d-dimensional space, where
the topology of the data manifold is preserved, the instances
from different classes are separated and d ¿ p. Here, f is a
p× d matrix and g is a c× d matrix.

3.2 The Cost Function
The solution to the overall problem of learning discrimina-
tive projections can be formulated as constructing mapping
functions f and g that minimize the cost function C(f, g) =
∑

i≤l
‖fTxi − gT yi‖

2 + µ
∑

i,j
‖fTxi − fTxj‖

2WX(i, j)
∑

i≤l

∑c

k=1,sk 6=yi
‖fTxi − gT sk‖2

,

where sk andWX are defined as follows: sk is a c×1 matrix.
sk(k) = 1, and sk(j) = 0 for any j 6= k. Sk is a c × l
matrix= (sk, · · · , sk). WX is a matrix, where WX(i, j) is the
similarity (could be defined by k-nearest neighbor approach)
between xi and xj .

Here, fTxi is the mapping result of xi. gT yi (or gT sk) is
the mapping result of label yi (or sk). The first term in the
numerator represents the difference between the projection
result of any instance xi and its corresponding label yi. We
want this value to be small, since this makes xi be close to
its true label. The second term in the numerator models the
topology of dataset X using both labeled and unlabeled data.
When it is small, it encourages the neighborhood relationship
within X to be preserved. µ is a weight to balance the first
and second terms. It is obvious that we want the numerator of
C(f, g) to be as small as possible. The denominator models
the distance between the projection result of each instance
xi and all the labels other than the correct label. We want
this value to be as large as possible, since this makes xi be
far away from its wrong labels. Thus, minimizing C(f, g) is
equal to learning f and g jointly to preserve the topology of
dataset X , and project instances to a new lower dimensional
space, where the instances from the same class are close to
each other and the instances from different classes are well
separated from each other.

3.3 High Level Explanation
Manifold regularization addresses the problem of learning
projections to map the data instances (with known labels)
to their class labels, preserving the manifold topology of the
whole dataset (considering both labeled and unlabeled data).
The ability to make use of unlabeled data reduces the pos-
sibility of overfitting. A loss function example under this
framework is described in Equation (1), and can be gener-
alized for our problem. Our goal is to jointly separate the
instances from different classes and learn data-dependent la-
bels, so whether the data will be projected to its original label
is not important as long as the instances from the same class
will stay together and the instances from different classes will
be separated. In our algorithm, we have a mapping function f
for data instances, and g for labels such that f and g can work
together to map the data instances and labels to a new space,
where the instances and their new labels are matched. The
mapping g is decided by both the given class labels and the
data manifold topology, and allows us to scale the entries of

the label vector by different amounts, which then allows bet-
ter projections of points. With the flexibility offered by g, we
can project similar classes to similar locations (this is learned
from the data manifold topology), and achieve the embedding
results of a dimensionality bounded by the number of input
features rather than the number of classes (without using g,
our result is also bounded by c).

In summary, the numerator of our loss function encourages
the instances with the same label to stay together, preserv-
ing the data manifold topology. The denominator of the loss
function encourages the instances with different labels to be
away from each other. The mapping g provides the best la-
bel projection with regard to the given loss function, and the
mapping f projects the data to match the resulting new la-
bels. Manifold topology is respected to handle the possible
overfitting problems.

3.4 Discriminative Projections: The Main
Algorithm

Some notation used in the algorithm is as follows:
γ = (fT , gT )T is a (p + c) × d matrix. Tr() means trace.
I is an l × l identity matrix. LX is a graph Laplacian
matrix [Belkin and Niyogi, 2003] corresponding to WX .

U1 =

(

I 0
0 0

)

m×m

, U2 = UT
3

=

(

I
0

)

m×l

, U4 = I .

The algorithmic procedure is as follows:
1. Construct matrices A,B and C:

A =

(

X 0
0 Y

)(

U1 −U2

−U3 U4

)(

XT 0
0 Y T

)

B =

c
∑

k=1

(

X 0
0 Sk

)(

U1 −U2

−U3 U4

)(

XT 0
0 ST

k

)

C =

(

X 0
0 Y

)(

µLX 0
0 0

)(

XT 0
0 Y T

)

2. Compute γ = (γ1, · · · , γd): the d minimum eigen-
vectors of the generalized eigenvalue decomposition
equation:

(A+ C)x = λ(B + C)x.

3. Compute discriminative projections f and g:
γ = (γ1, · · · , γd) is a (p + c) × d matrix, whose top
p rows= mapping function f , the next c rows= mapping
function g. i.e.

(

f

g

)

= (γ1, · · · , γd).

4. Compute the d-dimensional embedding of datasetX:
The d-dimensional embedding of X is fTX , whose ith
column represents the embedding of xi.

3.5 Justification
Theorem 1. The d minimum eigenvector solutions of the
equation (A + C)x = λ(B + C)x provide the optimal d-
dimensional discriminative projections to minimize the cost
function C(f, g).



Proof: Given the input and the cost function, the problem is
formalized as:

{f, g} = argf,g min(C(f, g)).

When d = 1, we define M,N and L as follows:

M =
∑

i≤l

(fTxi − g
T yi)

2, N =
∑

i≤l

c
∑

k=1

(fTxi − g
T sk)2,

L = µ
∑

i,j

(fTxi − f
Txj)

2WX(i, j).

argf,g min(C(f, g))

= argf,g min
M + L

N −M
= argf,g max

N −M

M + L

= argf,g max
N + L

M + L
= argf,g min

M + L

N + L
.

M = (fTX, gTY )

(

U1 −U2

−U3 U4

)(

XT f
Y T g

)

= γTAγ.

N = (fT , gT )B

(

f
g

)

= γTBγ.

L = µfTXLXX
T f = γTCγ.

argf,g minC(f, g) = argf,g min
γT (A+ C)γ

γT (B + C)γ
.

It follows directly from the Lagrange multiplier method that
the optimal solution that minimizes the loss function C(f, g)
is given by the minimum eigenvector solution to the general-
ized eigenvalue problem: (A+ C)x = λ(B + C)x.
When d > 1,

M =
∑

i≤l

‖fTxi − g
T yi‖

2 = Tr((γ1 · · · γd)
TA(γ1 · · · γd)).

N =
∑

i≤l

c
∑

k=1

‖fTxi − g
T sk‖

2

= Tr((γ1 · · · γd)
TB(γ1 · · · γd)).

L = µ
∑

i,j

‖fTxi − f
Txj‖

2WX(i, j)

= Tr((γ1 · · · γd)
TC(γ1 · · · γd)).

argf,g minC(f, g)

= argf,g min
Tr((γ1 · · · γd)

T (A+ C)(γ1 · · · γd))

Tr((γ1 · · · γd)T (B + C)(γ1 · · · γd))
.

Standard approaches [Wilks, 1963] show that the solution to
γ1 · · · γd that minimizes C(f, g) is provided by the eigenvec-
tors corresponding to the d lowest eigenvalues of the equa-
tion: (A+ C)x = λ(B + C)x.

The mapping functions f and g are linear. For them to be
nonlinear, we can directly compute the embedding result of
each given instance and label (use ui to replace fTxi and vj

to replace gT yj). The corresponding cost function and algo-
rithm can be given in a similar manner as the linear case dis-
cussed in this paper. This new problem is in fact technically
less challenging. The same problem can also be solved using
the framework of kernel CCA [Kuss and Graepel, 2003].

4 Experimental Results
In this section, we test discriminative projections, LDA, CCA
and LPP using two datasets: recognition of handwritten dig-
its using the USPS dataset (an image dataset with multiple
classes), and TDT2 data (a text dataset with multiple classes).
We use the following simple strategy to decide the value of µ
in the loss function C(f, g). Let s be the sum of all entries
of WX and l = the number of training examples with labels,
then l/s balances the scales of the first term and second term
in the numerator of C(f, g). We let µ = l/s, if we treat ac-
curacy and topology preservation as equally important. We
let µ > l/s, when we focus more on topology preservation;
µ < l/s, when accuracy is more important. In this paper, we
use µ = l/s for discriminative projections.

4.1 USPS Digit Data (Image Data)
The USPS digit dataset (www.gaussianprocess.org/gpml/data)
has 9298 images. We randomly divided it into a training set
(2000 cases) and a test set (7298 cases). Each image contains
a raster scan of the 16 × 16 grey level pixel intensities. The
intensities have been scaled to the range [-1, 1].

We first computed lower dimensional embeddings of the
data using discriminative projections, LDA, CCA and Local-
ity Preserving Projections (LPP). This dataset has 10 labels,
so LDA can only return an embedding of 9 or less dimen-
sions. LPP, CCA and discriminative projections can return an
embedding of any dimensionality. The 3D and 2D embedding
results are shown in Figure 2.

To quantitatively study how the discriminative information
is preserved by different approaches, we ran a leave-one-
out test. We first computed 9D and 100D embeddings us-
ing discriminative projections, LPP and CCA. We also com-
puted 9D embedding using LDA. Then we checked for each
point xi whether at least one point from the same class were
among its K nearest neighbors in the new space. We tried
K = 1, · · · , 10. The results are summarized in Figure 3.
From the figure, we can see that discriminative projections
(100 dimensional), and LPP (100 dimensional) achieve sim-
ilar performance (LPP is slightly worse), and outperform the
other approaches. This shows that discriminative projections
and LPP with more features are able to better preserve the
discriminative information of the given dataset compared to
using less features. Recall that the mapping results from LDA
are bounded by the number of classes, and can not generate
embedding results of high dimensionality in this test. Com-
paring all 4 approaches resulting in 9D embedding results,
CCA and LDA are still worse than Discriminative projections
and LPP. We checked the projection results of the training
data, and found that CCA and LDA worked perfectly for the
training data. This implies that LDA and CCA results overfit-
ted for the training data, and did not generalize well to the test
data. On the contrary, discriminative projections and LPP are
unlikely to run into overfitting, since they take the unlabeled
data into consideration when the projections are constructed.

We also used this example to visualize the new “prototype”
of each label in a 2D space (Figure 4). The original labels
are in a 10D space. The new labels are constructed by pro-
jecting the old labels onto the space spanned by the first two
columns of mapping function g. When µ = 103, we can see
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Figure 2: USPS digit test: (the color represents class label): (A)
discriminative projections using 3D embedding; (B) discriminative
projections using 2D embedding; (C) LDA using 3D embedding;
(D) LDA using 2D embedding; (E) LPP using 3D embedding; (F)
LPP using 2D embedding; (G) CCA using 3D embedding; (H) CCA
using 2D embedding.

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

K

P
er

ce
nt

ag
e

 

 

Discriminative Projections (100D Embedding)
Discriminative Projections (9D Embedding)
LDA (9D Embedding)
LPP (100D Embedding)
LPP (9D Embedding)
CCA (100D Embedding)
CCA (9D Embedding)

Figure 3: USPS test: This experiment measures how well the dis-
criminative information is preserved.

from the left figure that new labels of similar digits are close
to each other in the new space. For example, ‘0’ and ‘8’ are
together; ‘3’, ‘6’ and ‘9’ are also close to each other. When
µ is large, we focus more on topology preservation. The re-
sult makes sense, since to preserve local topology of the given
dataset, similar digits have a large chance of being projected
to similar locations. We ran another test with less respect to
manifold topology (by setting µ = 10−3). In the new sce-
nario, the new labels were much better separated in the new
space (right figure). This experiment shows that the mapping
g allows us to scale the entries of the label vector by different
amounts for different applications, which then allows more
flexible projections of instances.

4.2 TDT2 Data (Text Data)
The TDT2 corpus consists of data collected during the first
half of 1998 and taken from 6 sources, including 2 newswires
(APW, NYT), 2 radio programs (VOA, PRI) and 2 television
programs (CNN, ABC). It consists of more than 10,000 docu-
ments which are classified into 96 semantic categories. In the
dataset we are using, the documents that appear in more than
one category were removed, and only the largest 4 categories
were kept, thus leaving us with 5,705 documents in total.
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Figure 4: (left) Projection results of 10 USPS digit labels (µ=1000).
(right) Projection results of 10 USPS digit labels (µ=0.001).

We applied our approach, LDA, CCA and LPP to the TDT2
data assuming label information of 1/3 documents from each
class was given, i.e. l = 5, 705/3. To see how the discrimina-
tive information is preserved by different approaches, we ran
a similar leave-one-out test. Again, we first computed 3D and
100D embeddings using discriminative projections CCA and
LPP. We also computed the 3D embedding using LDA. Then
we checked for each document xi whether at least one doc-
ument from the same class was among its K nearest neigh-
bors in the new space (we use this as correctness). We tried
K = 1, · · · , 10. The results are summarized in Figure 5.
From this figure, we can see that discriminative projections
perform much better than the other approaches in all 10 tests
followed by LPP (100D), LPP(3D), LDA(3D) CCA(100D)
and CCA(3D).

Generally speaking, LDA does a good job at preserving
discriminative information, but it does not preserve the topol-
ogy of the given manifold and not suitable for many dimen-
sionality reduction applications, which need an embedding
defined by more than c − 1 features. Further, when the la-
beled data is limited, LDA could run into overfitting prob-
lems. Similar to LDA, CCA is also likely to have overfitting
problems when the labeled data is not sufficient. To see how
overfitting problems affect the performance, we applied all
four approaches to the data, and visualized the 2D embedding
results of the training data and test data in Figure 6. The figure
shows that the training and test embedding results of discrim-
inative projections and LPP are similar, but quite different for
CCA and LDA. For CCA and LDA, the embedding results
of the training data from each individual class converge to a
single point in the figure. However, the embedding results
are scattered across the figures for the test data. This strongly
indicates that their projection functions are over-tuned to the
training data and do not generalize well to the test data. As
a representative approach of regular dimensionality reduction
approaches, LPP can preserve the manifold topology, return
the embedding result of a dimensionality only bounded by the
number of input features. However, LPP totally disregards
the label information, and behaved much worse than discrim-
inative projections in this test: 10% worse on 100D embed-
ding and 25% worse on 3D embedding results. Discrimina-
tive projections combines the ideas of LDA, CCA and LPP,
such that both manifold topology and the class separability
will be preserved. In addition, depending on the applications,
users may decide how to choose µ to balance the two goals. If
we focus more on the manifold topology, we choose a larger
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Figure 5: TDT2 test: This experiment measures how well the dis-
criminative information is preserved.
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Figure 6: USPS digit test: (the color represents class label): (A)
discriminative projections using 2D embedding (training); (B) LDA
using 2D embedding (training); (C) LPP using 2D embedding (train-
ing); (D) CCA using 2D embedding (training); (E) discriminative
projections using 2D embedding (testing); (F) LDA using 2D em-
bedding (testing); (G) LPP using 2D embedding (testing); (H) CCA
using 2D embedding (testing).

value for µ; otherwise, we choose a smaller value for µ.

5 Conclusions
In this paper, we introduced a novel approach (“discrimina-
tive projections”) to jointly learn data-dependent label and
locality-preserving projections. The new approach is able
to construct discriminative features to map high-dimensional
data instances to a new lower dimensional space, preserving
both manifold topology and class separability. Leveraging
the flexibility of labels, discriminative projections goes be-
yond LDA and LPP in that it can project similar classes to
similar locations, and provide an embedding of an arbitrary
dimensionality rather than c− 1 for LDA in a problem with c
class labels. It also differs from the other regular dimension-
ality reduction since the discriminative information to sepa-
rate instances from different classes will be preserved. Our
approach is a semi-supervised approach making use of both
labeled and unlabeled data. It is general, since it can handle
both two class and multiple class problems. In addition to
the theoretical validations, we also presented real-world ap-
plications of our approach to information retrieval and a digit
recognition task in image analysis.
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